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Abstract. A numerical attempt to achieve stability of the two-fluid system incompressible helium
II is presented. The Orr–Sommerfeld equation for the planar Poiseuille flow of normal fluid with
relaxed velocity slip along the interface with a superfluid is solved. The numerical approach is a
modified version (with complex matrix pre-conditioning) of a spectral method. The relaxed results
are compared with non-relaxed ones which are subject to no-slip boundary conditions. The relaxed
slip-flow effect becomes more dominant as the interface parameter increases, because then the
critical Reynolds number (or the critical velocity) decreases.

1. Introduction

A most striking characteristic of liquid helium is that it exists in the liquid state down to absolute
zero temperature because: (a) the van der Waals forces in helium are weak; (b) the zero-point
energy, due to the light mass, is large. In fact, it is called a quantum liquid due to these kinds of
quantum effect, which are closely related to the Bose condensation for He II. The well-known
properties of He II can be largely accounted for on the basis of phenomenological two-fluid
theory [1, 2]. One of the basic assumptions of the two-fluid model is that He II consists of a
kind of mixture of two components, a normal component and a superfluid component. The
former has viscosity while the superfluid can move without friction as long as certain velocity
limits are not exceeded.

One crucial issue for the related research concerning He II is the critical velocity (when
there is flow through a capillary or plane channel), which depends on the micro-channel
size. Landau attributed the existence of a critical velocity in He II to the breakdown of the
superfluid due to the creation of excitations (he proposed that phonons and rotons are two
types of excitation which make up the normal fluid). If the velocity is less than the critical
value, there will be no dissipation or friction along the boundary or interface for the flow. Note
that if the helium is heated (e.g. by the viscous-dissipation effect), then it undergoes (phase)
transitions to excited states.

We assume that the critical velocity can be qualitatively investigated by studying its macro-
scopic or hydrodynamic stability characteristics.

The traditional starting point of an investigation of hydrodynamic stability is eigenvalue
analysis, which proceeds as follows: (i) linearize the laminar solution and then (ii) look
for unstable eigenvalues of the linearized problem. In much of the literature on linear
hydrodynamic stability [3], attention has been restricted to 2D perturbations in view of Squire’s
theorem; in particular, the well-known Orr–Sommerfeld equation is an eigenvalue equation
for 2D perturbations. For planar Poiseuille flow, with no-slip boundary conditions (which

† On leave from: PO Box 30-15, Shanghai 200030, People’s Republic of China.

0953-8984/00/378065+05$30.00 © 2000 IOP Publishing Ltd 8065



8066 W Kwang-Hua Chu

are normally valid for macro-channels) [4], eigenvalue analysis predicts a critical Reynolds
number Re = 5772 [5] as that at which instability should first occur; but in the laboratory,
transition to turbulence is observed for Re as low as ∼1000 [6].

We assume that, in a two-fluid model for incompressible helium II [7], one effect may play
a particularly significant role: velocity slip [8–11] along the interface between the normal fluid
and superfluid [8, 9] (please see reference [8], especially for slip flow of quantum fluids). The
distinction among various flow regimes can be established by introducing the Knudsen number
(which also characterizes the value of the velocity slip [8, 10, 11]), Kn = λ/L, where λ is the
mean free path and L is the characteristic flow dimension [8, 10, 11]. Slip-flow conditions
exist for 0.001 < Kn � 0.1, where the flow can be considered continuous if the velocity slip
at the walls is taken into account [8, 10, 11]. This is due to the incomplete momentum and
energy exchange between the fluid molecules and the solid boundaries [8–11].

Frisch et al [12] recently derived incompressible Navier–Stokes equations which are
verified models for dissipated or viscous fluids, from microscopic Boltzmann models for
Knudsen number much smaller than one (see also [13]). In the present work, the stability of
incompressible slip flow in a normal fluid bounded by two layers of superfluid is compared
with the traditional fluid flow in a macro-channel. That is to say, we are considering the
flow of 3He in a channel covered with a superfluid 4He film. That is, we will relax the no-
slip boundary conditions which are frequently used for traditional macro-channels to the slip
boundary conditions, which should be taken into account in this work when we consider the
slip flow [8]. The verified code developed by Chu and Chang [14] will be extended here to
include relaxed boundary conditions along the interfaces to obtain the stability characteristics
of the slip flow.

2. Governing equations

Macroscopically, the motion of the fluid (helium II) as a whole for the two-fluid (normal-fluid
and superfluid) system can be treated independently for different parts by using hydrodynamical
models (for dissipated and ideal fluid, respectively) starting from the microscopic atomic wave
function [1, 2]. The non-dimensional equations of motion for an incompressible normal-fluid
flow [3, 7], in the absence of body forces and moments, reduce to

∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∇2U (1)

where Re = ρŪh/µ is the Reynolds number. For the case of normal-fluid flow driven by
a constant pressure gradient, i.e., planar Poiseuille flow, the length scale is the halfwidth of
the normal-fluid layer h, and the velocity scale is the centreline velocity Ū . Following the
usual assumptions of linearized stability theory, Ui(xi, t) = ūi(xi) + u′

i (xi, t) and, similarly,
P(xi, t) = p̄(xi) + p′(xi, t), the linearized equation which governs the disturbances is

∂u′
i

∂t
+ (ū · ∇)u′

i + (u′ · ∇)ūi = −∇p′ +
1

Re
∇2u′

i . (2)

Disregarding the lateral disturbances, w′ = 0, a stream function for the disturbance, ψ , can be
defined such that u′ = ∂ψ/∂y, v′ = −∂ψ/∂x. Using normal-mode decomposition analysis,
ψ may be assumed to have the form ψ(x, y, t) = φ(y) exp[iα(x − ct)]. Substituting the
stream function and eliminating the pressure, we have the linearized disturbance equation

(D2 − α2)(D2 − α2)φ = iα Re[(ū − c)(D2 − α2)φ − (D2ū)φ] (3)

where D = d/dy. This is also valid for the slip-flow regime, 0.001 < Kn � 0.1, since the
flow can still be considered as continuous.
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2.1. Boundary conditions for the basic flow

For the slip flow, the continuous models can be used if the no-slip boundary condition is
modified. A few models have been suggested for estimating the non-zero velocity at a solid
surface [7–11]. In this study, we have adopted the approach based on Taylor’s expansion of the
velocity around the wall (cf. page 34 or 41 in reference [8]). Thus, the first-order approximation
yields ū|wall = Kn dū/dy. Consequently, the mean (basic) velocity profile is given by

ū = 1 − y2 + 2Kn (4)

for −1 � y � 1. The boundary conditions for φ or Dφ are the same as in the previous no-slip
approach, i.e., φ(±1) = Dφ(±1) = 0.

2.2. Numerical approach

The eigenvalue problem derived above was solved by using the verified code [14], which
used a spectral method [15] based on the Chebyshev-polynomial-expansion approach, after
the equation and boundary conditions were discretized. The algebraic equation is

1

24

N∑
p=n+4

p≡n (mod 2)

[p3(p2 − 4)2 − 3n2p5 + 3n4p5 + 3n4p3 − pn2(n2 − 4)2]ap

−
N∑

p=n+2
p≡n (mod 2)

{[
2α2 +

1

4
iα Re(4f − 4λ − cn − cn−1)

]
p(p2 − n2)

− 1

4
iα Re cnp[p2 − (n + 2)2] − 1

4
iα Re dn−2p[p2 − (n − 2)2]

}
ap

+ iα Re n(n − 1)an + {α4 + iα Re [(f − λ)α2 − 2]}cnan
− 1

4
iα3 Re [cn−2an−2 + cn(cn + cn−1)an + cnan+2] = 0 (5)

for n � 0, f = 1 + 2Kn, where cn = 0 if n > 0, and dn = 0 if n < 0, dn = 1 if n � 0. The
boundary conditions become

N∑
n=0

n≡0 (mod 2)

an = 0
N∑
n=0

n≡0 (mod 2)

n2an = 0 (6)

N∑
n=1

n≡1 (mod 2)

an = 0
N∑
n=1

n≡1 (mod 2)

n2an = 0. (7)

The matrices thus formed are ill conditioned because they are not diagonal or symmetric. So
before we perform floating-point computations to get the complex eigenvalues, we should
precondition these complex matrices to reduce the errors. Here we adapt Osborne’s algorithm
[16] to precondition these complex matrices via rescaling, i.e., by performing certain diagonal
similarity transformations of the matrix (the errors are in terms of the Euclidean norm of the
matrix) designed to reduce its norm. The details of this algorithm are given in [17]. The form
of the reduced matrix is upper Hessenberg; then we perform the stabilized LR transformations
for these matrices to get the eigenvalues [18] (please see also [23] for the details). Preliminary
verified results from this numerical code [14] have been obtained for the cases of Kn = 0 (no-
slip boundary conditions) and compared with the benchmark results of Orszag [5] and those for
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2D cases of Li and Widnall [19]. For example, for Re = 10 000.0, α = 1.0 for the test case:
planar Poiseuille flow [5], we obtained the same spectrum as for 0.237 526 48 + i 0.003 739 67
for Cr + i Ci [14] which Orszag obtained from CDC 7600 in 1971.

3. Results and discussion

Figure 1 compares the neutral curves for Kn = 0, 0.001, and 0.01. It is clear that as Kn

increases, from 0 to 0.001, and 0.01, the critical Reynolds number Rec decreases, from 5772
to 4836, and 1206 respectively. Hence, the velocity slip at the wall degrades the stability of
the flow. These results show a similar trend to those reported in [20]. Spectra of the Orr–
Sommerfeld operator were also calculated for the slip and no-slip flow (Kn = 0) at α = 1
for Reynolds numbers (Re = 400, 600, 1000, 1500) selected on the basis of the previous
observations mentioned in section 1 and references [6, 21, 22]. The shift in the spectra is
significant as Kn increases to 0.001 for all the Reynolds numbers [23]. This indicates that in
the slip-flow regime the rarefaction or velocity-slip effect becomes dominant. Thus, as the flow
scale decreases, slip-flow effects result in a smaller Rec or critical velocity. The excitations
for He II have an earlier onset for smaller micro-channel size and larger velocity slip. An
early transition to superfluid turbulence (due to smaller critical velocity) might result in more
viscous dissipations (or heatings) which will then trigger earlier phase transition. This result
is related to the issue of when the normal-fluid profile becomes unstable. The stream function

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Re

Neutral Stability curves for different Kn

α

Kn=0.0
Kn=0.001

Kn=0.01

Figure 1. Velocity-slip effects (Kn) on the neutral stability boundary of planar Poiseuille flow for
the normal fluid.
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ψ of our formulation could be related to the vorticity in hydrodynamics [3, 7, 9]; thus, the
unstable mode of ψ might give clues useful to the study of vortex perturbations in normal fluid.
It cannot, however, give us more clues useful to the investigation of this issue: the generation
of vortex lines when the superfluid exceeds a critical velocity [8, 24].

To conclude briefly, the (incompressible) Orr–Sommerfeld equation was numerically
solved to study the stability of the planar Poiseuille flow in incompressible helium II for the
normal-fluid part. The relaxed velocity slip along the interface between superfluid and normal
fluid decreases the critical Reynolds number or the critical velocity (for the same geometric
scale and properties of the fluid). Moreover, a slip-flow effect may account for some of the
discrepancy between the theoretical and experimental data [24], since the present results are
much closer to the reported experimental values [6, 21, 22, 24].
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